

MDA

RADARSAT Constellation Mission: Image Quality and Calibration Status

M. Lapointe, S. Côté (CSA) A. Thompson, D. Williams, P. Lee (MDA)

CEOS SAR WORKSHOP 2019 2019-11-19

RCM Initial Calibration - Overview

- RCM launch on June 12, 2019
- Initial Calibration period: July 3-Nov 14 (Constellation Commissioning Complete Review Meeting)
- Main initial calibration activities:
 - Beam Mode Checks
 - Rx Gain and Noise Levels
 - Azimuth Beam Patterns
 - Impulse Response
 - Radiometric Calibration
 - Pointing Calibration
 - Interchannel Timing Offset
 - Polarimetric and Compact-pol
 - Geolocation
 - CCD Interferometric phase
 - Ground Coverage Monitoring
 - Transponder

Main Calibration Targets

- Amazon: most accesses to amazon rainforest calibration sites have been used during commissioning
- Point Targets:
 - 3 primary sites with Corner Reflector pairs:
 - St-Hubert (close to CSA)
 - Alaska Satellite Facility in Fairbanks
 - Kiruna satellite station in Sweden
 - 2 transponders at St-Hubert site
- Ocean for receive-only images

More than 5000 calibration images acquired during commissioning!

Initial Beam Modes Checks - Stripmap

- Montreal area
- Very High Resolution 3m Compact-pol
- 3mx3m, 20 km swath
- 2-bit BAQ

RADARSAT Constellation Mission Data and Products ©Government of Canada (2019) – All Rights Reserved RADARSAT is an official mark of the Canadian Space Agency

Initial Beam Modes Checks - ScanSAR

- First RCM image - Baffin Island
- Initially some issues with Stepped Receive delay – now fixed

RADARSAT Constellation Mission Data and Products ©Government of Canada (2019)– All Rights Reserved RADARSAT is an official mark of the Canadian Space Agency

RCM-1 Low Noise Mode (100m x 100m) SCLNC HH-HV Acquisition date: June 29, 2019 First RCM Image!

RCM-1 Low Noise Mode (100m x 100m) SCLNB HH-HV Acquisition date: Sept 13, 2019

Initial Beam Modes Checks - Spotlight

- Cape Dyer, Nunavut, Canada
- RCM-2
- Spotlight (1m x 3m)
- FSL17 HH-HV
- Acquisition date: Sept 6, 2019
- Initial issue with azimuth focusing (3m vs. 1m): was caused by a range timing offset which is now fixed.

RADARSAT Constellation Mission Data and Products ©Government of Canada (2019)–All Rights Reserved RADARSAT is an official mark of the Canadian Space Agency

Impulse Response (1/2)

- Alaska CR
- Ascending
- Spotlight FSL7

PT Analysis id: PT_20191112T164413_mlapointe

Point Target analysis results:

Product: RCM1_OK1013940_PK1015076_1_FSL7_20191001_030631_VV_VH_SLC BeamString: VH-7

Point Target: Alaska-CR-Asc

 Type: Passive

 Height above WGS84 Ellipsoid:
 158.636035077 m

 Timing Delay:
 0.000000000 sec

 Location:
 lat
 64.885190805
 Ing
 -147.705178940

 Location:
 pixel
 1908
 line
 6491

IRF Measurements channel VV

Peak power: 40.621056802 dB Measured peak location in image without correction for height 1904.8488 line 6423,5663 pixel Peak location: lat 64.885455433 deg lng -147.705546677 deg 1843.3129 line Peak location: 6423,5663 pixel Peak location: Azimuth 1.63681280E+003 m Range 6.58072998E+005 m Incidence angle: 25.556410871 deg IRW: Azimuth 0.905015272 m (valid) Range 1.603222076 m (valid) Normalized(35.00 deg incidence) 2.795132323 m IRW broadening: Azimuth 0.100% (valid) Range -1.278% (valid) PSLR: Azimuth 23.065506888 dB (valid) Range 20.942743245 dB (valid) ISLR: Azimuth 21.722654094 dB (valid) Range 22.039647283 dB (valid) 2-D 18.409806020 dB (valid) Integrated power: 44.219743849 dB IRF Range slice plot IRF Image IRF 3-D plot IRF Azimuth slice plot Analysis Report Transfer to permanent database OK

Impulse Response (2/2)

- Verified that:
 - IRW broadening was within allocation to meet resolution requirement:
 - Azimuth: < 4%
 - Range: < 8%
 - 2D ISLR > 12 dB (requirement)
- Processing with Nominal Chirp showed slightly better performance than using the Replica.

Geolocation Calibration

- Results using Downlink Orbit
- Range:
 - Initially important ground range geolocation error (400-700m)
 - Timing delay offset estimated and adjusted
 - Results are now well within specifications (50m/100m)
- Azimuth:
 - A processor error was initially causing an alongtrack error close to 40m.
 - Results are now well within specifications (50m/100m)
- On-going work to improve Definitive Orbit data.

Pointing Calibration Yaw and Pitch

- Compared Yaw/Pitch from Doppler centroid estimates fromSAR data and Yaw/Pitch from spacecraft
- Correction of RCM-1, RCM-2 and RCM-3 yaw and pitch offsets, resulting in better initial estimates of yaw/pitch for processing and Doppler centroid closer to zero.

	Pitch Offset		Yaw Offset		
	Average	Average Std Dev Avera		Std Dev	
RCM-1	-0.031°	0.03°	-0.20°	0.04°	
RCM-2	-0.196°	0.02°	0.144°	0.03°	
RCM-3	0.037°	0.02°	0.109°	0.04°	

Pointing Calibration Roll

- Estimated roll offset by comparing the measured elevation patterns (from amazon images) and the reference patterns (from the antenna model)
- Initial correction of RCM-2 roll angle by 0.65 deg
- Recent adjustments of the roll offsets for the 3 satellites in the payload characterization parameters used for processing.

RCM-1 Results:

- Mean pointing offset = +0.099 deg (pointing too far out)
- Standard deviation 0.028 deg
- Slight upward trend with incidence angle

Radiometric Calibration

- Pulse Dependent Gain Factor measurements
 - Absolute Calibration using Amazon
 - Using a uniform beam over a variety of pulse durations and bandwidth

Radiometric Calibration

- Elevation Patterns Measurements:
 - Measured pattern: Gamma-0 image over Amazon reference expected Gamma-0
 - Comparison with reference pattern (from antenna model)
- Calibration updates were made considering parametric and systemic factors rather than individual beam shapes:
 - Antenna model corrected to account for receive amplitude weighting issue
 - Approximate correction to account for antenna patch modeling issue affecting large scan angles.

Caused by an issue with receive amplitude coefficients modeling

Polarimetric and Compact-Pol Calibration

- Quad-Pol:
 - Tx and Rx channel imbalances and cross-talk have been measured for selected quad-pol beams images over amazon:
 - Imbalance terms lower than approx. 1 dB
 - Cross-talk lower than -30dB
 - Approximate correction of those terms have been applied
 - Consistent with results over corner reflectors
- Compact-Pol:
 - Tx and Rx imbalances estimated and approximately corrected using special calibration quad-pol modes images over amazon.

Coherent Change Detection

2D Bandwidth Overlap well within requirement of 75%

Sat 1	Date 1 st acq	Sat 2	Date 2 nd acq	Days betw een acqs	Beam Mode Mnemon ics	AOI	Doppler BW Overlap	Ground Range BW Overlap	2D BW Overlap	
RCM-2	2019-10-23	RCM-3	2019-10-27	4	3M27	Inuvik	0.985	0.992	0.977	
RCM-2	2019-10-23	RCM-1	2019-10-31	8	3M27	Inuvik	0.985	0.992	0.977	
RCM-2	2019-10-23	RCM-2	2019-11-04	12	3M27	Inuvik	0.999	0.999	0.998	
RCM-3	2019-10-29	RCM-1	2019-11-02	4	3MCP32	Montreal	0.982	0.998	0.980	
RCM-3	2019-10-24	RCM-1	2019-10-28	4	5M1	BC	0.000	0.971	0.018	¢
RCM-3	2019-10-24	RCM-2	2019-11-01	8	5M1	BC	0.972	0.987	0.960	
RCM-3	2019-10-24	RCM-3	2019-11-05	12	5M1	BC	0.995	0.984	0.979	
RCM-3	2019-10-25	RCM-1	2019-10-29	4	5MCP18	Montreal	0.969	0.999	0.968	
RCM-3	2019-10-24	RCM-1	2019-10-28	4	16M11	Montreal	0.978	0.972	0.951	
RCM-3	2019-11-02	RCM-1	2019-11-06	4	16M7	Australia	0.998	0.979	0.977	1
RCM-1	2019-10-23	RCM-3	2019-10-31	8	SC30MD	North Qc	0.968	0.9889	0.957	
RCM-2	2019-10-26	RCM-3	2019-10-30	4	SC30MC	North Qc	0.993	0.981	0.974	
RCM-1	2019-10-26	RCM-2	2019-10-30	4	SC30MD	Ontario	0.987	0.980	0.967	Real of
RCM-1	2019-11-02	RCM-2	2019-11-06	4	SC30MA	Alberta	0.952	0.952	0.906	

PRODUCT 1 Product ID: RCM3_OK1020669_PK1020756_1_16M7_20191102_090752_VV_SLC Product Type: SLC Acquisition Date: 2019-11-02T09:07:52.850000Z Beams: H-7

PRODUCT 2 Product ID: RCM1_OK1020669_PK1021779_1_16M7_20191106_090730_VV_SLC Product Type: SLC Acquisition Date: 2019-11-06T09:07:30.030000Z Beams: H-7

SECONDARY PRODUCT SEARCH PARAMETERS

Minimum Geographic % Overlap: 10 Must contain first image's centroid: Yes

REFERENCE POINT SELECTION

Low BW

overlap caused

by a GPS

issue

Reference Point Description: Intersection Center Reference Point [Latitude, Longitude]: [-27.886, 140.646] Reference Height: 77.214

2D BANDWIDTH OVERLAP RESULTS

2D Bandwidth Overlap: 0.977277 Ground Range Bandwidth Overlap: 0.979422 Doppler Bandwidth Overlap: 0.997810

ADDITIONAL INFORMATION Range Bandwidth: 2.20000E+007, 2.20000E+007 [Hz] Azimuth Bandwidth: 1.57000E+003, 1.57000E+003 [Hz] Radar Center Frequency: 5.40500, 5.40500 [GHz] Slant Range: 6.92435E+005, 6.92432E+005 [m] Satellite Orbit Radius: 6.97435E+006, 6.97437E+006 [m] Elevation Angle: 28.3677, 28.3651 [Degrees] Inclination Angle: 31.3266, 31.3237 [Degrees] Ground Range Low Frequency: 2.80443, 2.80419 [GHz] Ground Range Low Frequency: 2.81586, 2.81563 [GHz] Along-Track Effective Doppler Shift: 1.33579, 1.33579 [Hz] Doppler Center Frequency: -83.693, -88.4735 [Hz]

RADARSAT Constellation Mission Data and Products © Government of Canada (2019) – All Rights Reserved RADARSAT is an official mark of the Canadian Space Agency

Ground Coverage Monitoring

Cont 6llation

RCM Image Quality Status Summary

- Impulse response:
 - Resolution as expected
 - Sidelobes as expected
- Geolocation:
 - Adjustments of timing delay offset + processor fix: geolocation accuracy now within specs
 - On-going assessment of Definitive orbit
- Yaw-Pitch-Roll pointing corrections have been made.
- Preliminary Radiometric calibration:
 - Pulse Dependent Gain Factor measured
 - Many elevation patterns measured
 - Some corrective measures implemented to fix observed discrepancies
- Preliminary correction for channel imbalance and cross-talk just completed for quad-pol and compact-pol
- Routine calibration will continue throughout the mission!

RADARSAT Constellation Mission Data and Products ©Government of Canada (2019)– All Rights Reserved RADARSAT is an official mark of the Canadian Space Agency

Thank you!

